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Abstract. Let A ⊆ ω2 be measurable. The density set DA is the set of
Z ∈ ω2 such that the local measure of A along Z tends to 1. Suppose
that A is a Π0

1 set with empty interior and the uniform measure of A is
a positive computable real. We show that DA is lightface Π0

3 complete
for effective Wadge reductions. This is an algorithmic version of a result
in descriptive set theory by Andretta and Camerlo [1]. They show a
completeness result for boldface Π0

3 sets under plain Wadge reductions.

1 Introduction

We work in Cantor space ω2 with the product measure µ. For a finite bit
string s and a measurable set A ⊆ ω2, the local measure of A above s is

µ([s] ∩ A)/2−|s|,

where [s] is the clopen set in ω2 consisting of all the extensions of s (this
set is often denoted Ns in the literature). Let DA be the points Z of such
that A has density 1 at Z, namely

DA = {Z : lim
n
µZ�n(A) = 1}.

We call density set every set of the form DA, for some measurable A. We
will be mainly interested in closed A, in which case DA ⊆ A.

The Lebesgue density theorem for Cantor space states that if A is
measurable, then almost every Z ∈ A is in DA. This result has been
the seed for recent investigations both in algorithmic randomness and in
descriptive set theory.

In algorithmic randomness, density has been instrumental in solving
the long-open “covering problem”. Combining Bienvenu et al. [3] and
Day, Miller [5] yielded the answer; for an overview see [2]. Khan [6] ob-
tained a variety of results, in particular relating density for the reals
with density for Cantor space. In a recent article, Myabe et al. [7] define



density randomness of a point Z in Cantor space as the combination of
Martin-Löf-randomness of Z and the property that Z ∈ DP for each
Π0

1 set P containing Z; they show the equivalence of density randomness
with a number of notions stemming from effective analysis. Martin-Löf-
randomness of Z does not necessarily imply that Z satisfies the effective
version of Lebesgue’s theorem; for instance, the least element of a non-
empty Π0

1 set P of ML-randoms is not in DP.

In descriptive set theory, Andretta and Camerlo [1] have analised the
complexity of the density sets. It is easily seen that the Π0

3 pointclass is
an upper bound for this study. For example, if A = [s], then DA = A,
which is closed. In [1, sec. 7] the authors show that DA is Π0

3-complete
with respect to Wadge reducibility in case that A has empty interior
and positive measure. They also prove that density sets can have any
complexity within Π0

3. The first author in [4] has conducted a similar
study of the difference hierarchy over the closed sets in the setting of the
real line with the Lebesgue measure.

The goal of this short paper is to connect the two approaches to
Lebesgue’s theorem. We give an algorithmic version of the result in [1].
We show that for any (lightface) Π0

1 set A ⊆ ω2 with empty interior and
measure µA a positive computable real, the density set DA is lightface
Π0

3 complete for algorithmic Wadge reductions.

To say that a real r is computable means that from a number n ∈ ω we
can compute a rational that is within 2−n of r. The algorithmic version of
Wadge reducibility is as follows: for C,D ⊆ ω2, we write D ≤m C if there
is a total Turing functional Ψ such that D = Ψ−1(C). Totality means that
Ψ(Y ) ∈ ω2 for each Y ; equivalently, Ψ(Y ;n) is obtained by evaluating a
truth table computed from n on Y . Note that it is easy to construct such
a set A, for instance by a Cantor space version of the construction of a
Cantor set of positive measure in the unit interval.

In our proof, while we import the basic combinatorics of the approach
in [1], the details are more complicated because we need to build an
algorithmic Wadge reduction. This is where we use the hypothesis that
the measure of A is computable. It is not known at present whether this
hypothesis is actually necessary. The other hypothesis (that the interior
be empty) is of course necessary, as for instance shown by taking A to be
the whole Cantor space.

2 Completeness for lightface point classes

For the basics about arithmetical hierarchy see for example [10] and [9].



Definition 1. Consider a lightface point class Γ in Cantor space, such
as Π0

2 or Π0
3 . We say that C ⊆ ω2 is Γ -complete if C is in Γ , and for

each D ∈ Γ we have D ≤m C.

The next result is folklore (see e.g. [8]). For the reader’s benefit we
provide the short proof.

Proposition 2 The class C of all sequences with infinitely many 1’s is
Π0

2 -complete.

Proof. The class C is clearly Π0
2 . Now suppose D is Π0

2 , so D =
⋂

n Gn
with Gn+1 ⊆ Gn for a uniformly Σ0

1 sequence 〈Gn〉n∈ω. Define a total
Turing functional Ψ as follows. Given a sequence of bits Z, at stage t we
use the first t bits of Z, and append one bit at the end of the output ΨZ .
We append 0 unless we see at stage t that [Z �t] ⊆ Gn for the next n; in
that case we append 1.

In the following we effectively identify ω×ω2 and ω2 via the standard
computable pairing function ω × ω → ω. The following is presumably
folklore.

Proposition 3 The set E = {Z ∈ ω2: ∀n∀∞k Z(n, k) = 0} is Π0
3 -

complete.

Proof. Clearly E is Π0
3 . Now suppose a given set F is Π0

3 , so G =
⋂

n Gn
where Gn is uniformly Σ0

2 . By the previous proposition and the uniformity
in D of its completeness part, for each n we effectively have a Turing
functional Ψn such that Gn = Ψ−1n (ω2\C). Define a total Turing functional
Ψ : ω2→ ω×ω2 by

ΨZ(n, r) = ΨZ
n (r).

Clearly Z ∈ F ⇔ ∀n [Z ∈ Gn]⇔ ∀n [ΨZ
n ∈ ω2 \ C]⇔ ΨZ ∈ E .

3 Reaching the maximal complexity

Theorem 4 Let A ⊆ ω2 be a Π0
1 set with empty interior such that µA >

0 and µA is a computable real. Then DA is Π0
3 -complete.

We begin with some preliminaries. In the following s, t, u denote strings
of bits. Note that if µA is a computable real then µs(A) is a computable
real uniformly in s (see e.g. [9, 1.9.18]). Also, µs(A) < 1 for each s because
A has empty interior.



Let L(s) = µs(A). We note that L is a computable martingale in
the sense of algorithmic randomness. That is, L ≥ 0, the “martingale
equality” L(s0) + L(s1) = 2L(s) holds for each string s, and L(s) is a
computable real uniformly in s; see e.g. [9, Ch. 7]. By hypothesis that A
has empty interior, we have L(s) < 1 for each s.

We will show that the oscillation behaviour of L along certain paths
can be controlled sufficiently well in order to code the Π0

3 -complete set E
from Proposition 3 into DA. For p ∈ N let δp = 1−3−p. We write θ(s) = p
if δp−1 < L(s) < δp. We leave θ(s) undefined in case L(s) = δk for some
k. In the following, when we write θ(s) we imply that θ(s) is defined.
Observe that, if θ(X �n) is defined for each n and limn θ(X � n) = ∞,
then X ∈ DA. Note that the binary relations {〈s, p〉 : θ(s) = p} and
{〈s, p〉 : θ(s) ≥ p} are Σ0

1 because the martingale L is computable.

Lemma 5.

(i) (Increasing the value of L.) Let p < k and θ(s) = p. There is t ⊃ s
such that θ(t) ≥ k and L(u) > δp−1 for each u with s ⊆ u ⊆ t.

(ii) (Decreasing the value of L.) Let p > q and θ(s) = p. There is t ⊃ s
such that θ(t) = q and L(u) > δq−1 for each u with s ⊆ u ⊆ t.

Proof. (i) By an application of the Lebesgue density theorem [1, Prop.
3.5] (where r there is δk), there exists a prefix minimal string v ⊃ s such
that L(v) ≥ δk and L(u) ≥ L(s) for each u with s ⊆ u ⊆ v. If θ(v) is
defined, the string t = v is as required. Otherwise we have L(v) = δm for
some m ≥ k. By the Lebesgue density theorem, L is not constant on the
set of extensions of v, so one can choose a prefix minimal string w ⊇ v
such that L(w0) 6= L(w1). By the minimality of w we have L(v′) = δm
for each v′ with v ⊆ v′ ⊆ w.

First suppose that L(w0) > L(w). Since L(w0) < 1, we have L(w0)−
L(w) < 3−m. Hence L(w)−L(w1) = L(w0)−L(w) < 3−m by the martin-
gale equality, and thus δm−1 < L(w1) < δm because δm−1 = δm− 2 · 3−m.
Then θ(w1) = m ≥ k, so the string t = w1 is as required. If L(w1) > L(w)
instead, then t = w0 is as required by an analogous argument.

(ii) As L(s) < 1, by the Lebesgue density theorem there exists a prefix
minimal t ⊃ s such that L(t) < δq. Let t = vb where b ∈ {0, 1}. Since
L ≤ 1 the martingale equality for 1−L implies that 2(1−L(v)) ≥ 1−L(t).
So L(t) ≤ δq−1 would imply 2(1 − L(v)) ≥ 1 − L(t) ≥ 3 · 3−q > 2 · 3−q,
and hence L(v) < δq contrary to the minimality of t. Hence θ(t) = q and
L(u) > δq−1 for each u with s ⊆ u ⊆ t, as required. This establishes the
lemma.



Remark 6. By the remarks on θ above and since L is computable, all the
conditions in the Lemma are Σ0

1 . Thus in (i) given a string s and numbers
p < k, if θ(s) = p we can run a search for the string t. So the function
s, p, k 7→ t is partial computable and defined whenever θ(s) = p < k.
A similar remark applies to (ii).

Proof (of Theorem 4). By Proposition 3, the set

E = {Z ∈ ω×ω2 | ∀q∀∞n[Z(q, n) = 0]}

is Π0
3 -complete; thus, it will be enough to show that E ≤m D(A). In the

following let a, b denote bit-valued square matrices. Given such a matrix
a, we will compute a string s = ψ(a) ∈ <ω2 in such a way that θ(s) is
defined. We ensure that a ⊆ b→ ψ(a) ⊆ ψ(b). Then the function

Ψ : ω×ω2→ ω2, Ψ(Z) =
⋃

n ψ(Z � n× n)

is a total Turing functional.
Defining ψ. The definition of ψ is by recursion, using Lemma 5 and Re-
mark 6. If µA > 1/2, after removing from A either the elements of Cantor
space starting with 0 or the elements starting with 1, we may assume that
µA ≤ 1/2. So we may assume that θ(∅) is defined. We set ψ(∅) = ∅.

Now suppose that φ(a) has been defined for each n × n bit-valued
matrix a in accordance with the conditions above. Given a matrix b =
〈b(i, j) | i, j < n+ 1〉, let s = ψ(a) where a = b � n× n. Then p = θ(s) is
defined.

If there is a q ≤ n such that b(q, n) = 1, choose q least.

– If q < p, via (ii) of Lemma 5 compute a string t ⊃ s such that θ(t) = q
and L(u) > δq−1 for each u with s ⊆ u ⊆ t, and define ψ(b) = t.

– If q ≥ p, or there is no such q ≤ n at all, let k = max(p + 1, n + 1).
Via (i) of Lemma 5 compute a string t ⊃ s such that θ(t) ≥ k and
L(u) > δp−1 for each u with s ⊆ u ⊆ t, and define ψ(b) = t. This
completes the recursion step.

We verify that E ≤m DA via Ψ . First suppose that Z /∈ E . Let q
be least such that ∃∞n[Z(q, n) = 1]. Then for arbitrarily large n, we
have θ(ψ(Z � n × n)) = q, hence θ(Ψ(Z) � r) = q for infinitely many r.
Therefore Ψ(Z) /∈ DA.

Now suppose that Z ∈ E . Then for every q ∈ ω, there is mq such that
∀m ≥ mq[Z(q,m) = 0]. For r ∈ ω, let nr = max{m0, . . . ,mr, r}. Note
that for each n ≥ nr, if Z(q, n) = 1 then q > r.

The following claim will show that Ψ(Z) ∈ DA.



Claim. Given n > nr, let s = ψ(Z � n×n) and t = ψ(Z � (n+1)×(n+1)).
For each string u with s ⊆ u ⊆ t, we have L(u) ≥ δr.
To see this, we prove inductively that θ(ψ(Z � n×n)) > r for each n > nr.
For the start of the induction at nr + 1, suppose that s = ψ(Z � nr × nr)
has just been defined and consider the next step of the definition of ψ
along Z. The least possible value of q is r + 1. Since nr ≥ r, no matter
whether we apply (ii) or (i) of the lemma we ensure that θ(t) > r and
hence L(t) > δr, where t = ψ(Z � (nr + 1)× (nr + 1)).

For the inductive step, suppose that n > nr and for s = ψ(Z � n× n)
we have θ(s) > r. Let t = ψ(Z � (n + 1) × (n + 1)). Again the least
possible value of q is r + 1. If we apply (ii) of the lemma then θ(t) > r
and L(u) > δr for each u with s ⊆ u ⊆ t. If we apply (i) then, where
θ(s) = p > r, we have θ(t) ≥ p + 1 and L(u) > δr for each u with
s ⊆ u ⊆ t. This completes the claim.

We conclude that for each r, we have L(Ψ(Z)�m) ≥ δr for sufficiently
large m. Hence Ψ(Z) ∈ DA.

Theorem 4 leaves open the following question. Is there a Π0
1 class with

empty interior and non-computable measure such that the density set is
not Π0

3 -complete?
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